Stage-dependent suppression of the formation of dentin-resorbing multinuclear cells with migration inhibitory factor in vitro

Exp Ther Med. 2012 Jan;3(1):37-43. doi: 10.3892/etm.2011.362. Epub 2011 Oct 7.

Abstract

The macrophage migration inhibitory factor (MIF) is a crucial mediator of immune responses and is known to play a pivotal role in cell proliferation and differentiation. In this study, we assessed whether MIF exerts regulatory effects on osteoclast formation in bone marrow cells and, if so, by what mechanism. Bone marrow cells were either co-cultured with MC3T3-E1 cells or cultured with macrophage-colony stimulating factor (M-CSF) and the soluble form of the receptor activator of the nuclear factor-κB ligand (RANKL). Under the influence of MIF, the formation of osteoclastic multinuclear cells was examined. The number of multinuclear TRAP-positive cells formed in the co-culture was significantly reduced when MIF (≥0.1 μg/ml) was exogenously applied during the third and fourth days of the 6-day cultivation period. MIF affected neither the number of mononuclear TRAP-positive cells induced with M-CSF and RANKL, nor the expression of RANKL and osteoprotegerin in MC3T3-E1 cells. TRAP-positive cells cultured on dentin slices with MIF showed lower dentin-resorbing activity than those cultured without MIF. These results suggest that MIF has no regulatory roles in the differentiation of bone marrow cells to mononuclear TRAP-positive cells, but has inhibitory effects on the formation of mature osteoclasts by preventing cell fusion, which may eventually interfere with the osteoclast-mediated dentin resorption.