Evolution and the microbial control of insects

Evol Appl. 2012 Jul;5(5):455-69. doi: 10.1111/j.1752-4571.2012.00269.x. Epub 2012 May 31.

Abstract

Insect pathogens can be utilized in a variety of pest management approaches, from inundative release to augmentation and classical biological control, and microevolution and the consideration of evolutionary principles can potentially influence the success of all these strategies. Considerable diversity exists in natural entomopathogen populations and this diversity can be either beneficial or detrimental for pest suppression, depending on the pathogen and its mode of competition, and this should be considered in the selection of isolates for biological control. Target hosts can exhibit considerable variation in their susceptibility to entomopathogens, and cases of field-evolved resistance have been documented for Bacillus thuringiensis and baculoviruses. Strong selection, limited pathogen diversity, reduced gene flow, and host plant chemistry are linked to cases of resistance and should be considered when developing resistance management strategies. Pre- and post-release monitoring of microbial control programs have received little attention; however, to date there have been no reports of host-range evolution or long-term negative effects on nontarget hosts. Comparative analyses of pathogen population structure, virulence, and host resistance over time are required to elucidate the evolutionary dynamics of microbial control systems.

Keywords: Bacillus thuringiensis; baculovirus; diversity; entomopathogen; genotype × environment interaction; local adaptation; mixed infection; resistance; virulence.