Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis

J Am Chem Soc. 2012 Sep 26;134(38):15814-21. doi: 10.1021/ja305048p. Epub 2012 Sep 12.

Abstract

Iron carbide nanoparticles have long been considered to have great potential in new energy conversion, nanomagnets, and nanomedicines. However, the conventional relatively harsh synthetic conditions of iron carbide hindered its wide applications. In this article, we present a facile wet-chemical route for the synthesis of Hägg iron carbide (Fe(5)C(2)) nanoparticles, in which bromide was found to be the key inducing agent for the conversion of Fe(CO)(5) to Fe(5)C(2) in the synthetic process. Furthermore, the as-synthesized Fe(5)C(2) nanoparticles were applied in the Fischer-Tropsch synthesis (FTS) and exhibited intrinsic catalytic activity in FTS, demonstrating that Fe(5)C(2) is an active phase for FTS. Compared with a conventional reduced-hematite catalyst, the Fe(5)C(2) nanoparticles showed enhanced catalytic performance in terms of CO conversion and product selectivity.