A soft copper(II) porous coordination polymer with unprecedented aqua bridge and selective adsorption properties

Chemistry. 2012 Oct 8;18(41):13117-25. doi: 10.1002/chem.201201820. Epub 2012 Aug 30.

Abstract

Herein, the synthesis, crystal structure, and full characterization of a new soft porous coordination polymer (PCP) of ([Cu(2)(dmcapz)(2)(OH(2))]DMF(1.5))(n) (1) formulation, which is easily obtained in the reaction of CuX(2) (X = Cl, NO(3)) salts with 3,5-dimethyl-4-carboxypyrazole (H(2)dmcapz) is present. Compound 1 shows a copper(II) dinuclear secondary building unit (SBU), which is supported by two pyrazolate bridges and an unprecedented H(2)O bridge. The dinuclear SBUs are further bridged by the carboxylate ligands to build a diamondoid porous network. The structural transformations taking place in 1 framework upon guest removal/uptake has been studied in detail. Indeed, the removal of the bridging water molecules gives rise to a metastable evacuated phase (1 b) that transforms into an extremely stable porous material (1 c) after freezing at liquid-nitrogen temperature. The soaking of 1 c into water allows the complete and instantaneous recover of the water-exchanged material (1 a'). Remarkably, 1 b and 1 c materials possess structural bistability, which results in the switchable adsorptive functions. Therefore, the gas-adsorption properties of both materials have been studied by means of single-component gas adsorption isotherms as well as by variable-temperature pulse-gas chromatography. Both materials present permanent porosity and selective gas-adsorption properties towards a variety of gases and vapors of environmental and industrial interest. Moreover, the flexible nature of the coordination network and the presence of highly active convergent open metal sites confer on these materials intriguing gas-adsorption properties with guest-triggered framework-breathing phenomena being observed. The plasticity of Cu(II) metal center and its ability to form stable complexes with different coordination numbers is at the origin of the structural transformations and the selective-adsorption properties of the studied materials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Copper / chemistry*
  • Crystallography, X-Ray
  • Ligands
  • Models, Molecular
  • Molecular Structure
  • Organometallic Compounds / chemistry*
  • Polymers / chemistry*
  • Porosity

Substances

  • Ligands
  • Organometallic Compounds
  • Polymers
  • Copper