Demonstration of defect-free and composition tunable GaxIn₁-xSb nanowires

Nano Lett. 2012 Sep 12;12(9):4914-9. doi: 10.1021/nl302497r. Epub 2012 Aug 30.

Abstract

The Ga(x)In(1-x)Sb ternary system has many interesting material properties, such as high carrier mobilities and a tunable range of bandgaps in the infrared. Here we present the first report on the growth and compositional control of Ga(x)In(1-x)Sb material grown in the form of nanowires from Au seeded nanoparticles by metalorganic vapor phase epitaxy. The composition of the grown Ga(x)In(1-x)Sb nanowires is precisely controlled by tuning the growth parameters where x varies from 1 to ∼0.3. Interestingly, the growth rate of the Ga(x)In(1-x)Sb nanowires increases with diameter, which we model based on the Gibbs-Thomson effect. Nanowire morphology can be tuned from high to very low aspect ratios, with perfect zinc blende crystal structure regardless of composition. Finally, electrical characterization on nanowire material with a composition of Ga(0.6)In(0.4)Sb showed clear p-type behavior.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure*
  • Molecular Conformation
  • Nanotechnology / methods*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances