Biophysical characterization of Met-G-CSF: effects of different site-specific mono-pegylations on protein stability and aggregation

PLoS One. 2012;7(8):e42511. doi: 10.1371/journal.pone.0042511. Epub 2012 Aug 8.

Abstract

The limited stability of proteins in vitro and in vivo reduces their conversion into effective biopharmaceuticals. To overcome this problem several strategies can be exploited, as the conjugation of the protein of interest with polyethylene glycol, in most cases, improves its stability and pharmacokinetics. In this work, we report a biophysical characterization of the non-pegylated and of two different site-specific mono-pegylated forms of recombinant human methionyl-granulocyte colony stimulating factor (Met-G-CSF), a protein used in chemotherapy and bone marrow transplantation. In particular, we found that the two mono-pegylations of Met-G-CSF at the N-terminal methionine and at glutamine 135 increase the protein thermal stability, reduce the aggregation propensity, preventing also protein precipitation, as revealed by circular dichroism (CD), Fourier transform infrared (FTIR), intrinsic fluorescence spectroscopies and dynamic light scattering (DLS). Interestingly, the two pegylation strategies were found to drastically reduce the polydispersity of Met-G-CSF, when incubated under conditions favouring protein aggregation, as indicated by DLS measurements. Our in vitro results are in agreement with preclinical studies, underlining that preliminary biophysical analyses, performed in the early stages of the development of new biopharmaceutical variants, might offer a useful tool for the identification of protein variants with improved therapeutic values.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biophysics / methods*
  • Circular Dichroism
  • Granulocyte Colony-Stimulating Factor / chemistry*
  • Humans
  • Light
  • Methionine / chemistry*
  • Models, Statistical
  • Protein Conformation
  • Protein Stability
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Scattering, Radiation
  • Spectrometry, Fluorescence / methods
  • Spectroscopy, Fourier Transform Infrared / methods
  • Temperature

Substances

  • Recombinant Proteins
  • Granulocyte Colony-Stimulating Factor
  • Methionine

Grants and funding

SMD and GC acknowledge the financial support of the FAR (Fondo di Ateneo per la Ricerca) of the University of Milano-Bicocca (Italy). DA acknowledges a postdoctoral fellowship of the University of Milano-Bicocca. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.