Structural and molecular micropatterning of dual hydrogel constructs for neural growth models using photochemical strategies

Biomed Microdevices. 2013 Feb;15(1):49-61. doi: 10.1007/s10544-012-9687-y.

Abstract

Chemotactic and haptotactic cues guide neurite growth toward appropriate targets by eliciting attractive or repulsive responses from the neurite growth cones. Here we present an integrated system allowing both structural and molecular micropatterning in dual hydrogel 3D tissue culture constructs for directing in vitro neuronal growth via structural, immobilized, and soluble guidance cues. These tissue culture constructs were fabricated into specifiable geometries using UV light reflected from a digital micromirror device acting as a dynamic photomask, resulting in dual hydrogel constructs consisting of a cell growth-restrictive polyethylene glycol (PEG) boundary with a cell growth-permissive interior of photolabile α-carboxy-2-nitrobenzyl cysteine agarose (CNBC-A). This CNBC-A was irradiated in discrete areas and subsequently tagged with maleimide-conjugated biomolecules. Fluorescent microscopy showed biomolecule binding only at the sites of irradiation in CNBC-A, and confocal microscopy confirmed 3D binding through the depth of the construct. Neurite outgrowth studies showed contained growth throughout CNBC-A. The diffusion rate of soluble fluorescein-bovine serum albumin through the dual hydrogel construct was controlled by PEG concentration and the distance between the protein source and the agarose interior; the timescale for a transient protein gradient changed with these parameters. These findings suggest the dual hydrogel system is a useful platform for manipulating a 3D in vitro microenvironment with patterned structural and molecular guidance cues for modeling neural growth and guidance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Cell Proliferation / drug effects
  • Diffusion
  • Ganglia, Spinal / cytology
  • Hydrogels / chemistry*
  • Hydrogels / pharmacology*
  • Maleimides / chemistry
  • Microtechnology / methods*
  • Neurites / drug effects*
  • Neurites / metabolism
  • Photochemical Processes*
  • Polyethylene Glycols / chemistry
  • Polyethylene Glycols / pharmacology
  • Serum Albumin, Bovine / chemistry
  • Tissue Culture Techniques

Substances

  • Hydrogels
  • Maleimides
  • maleimide
  • Serum Albumin, Bovine
  • Polyethylene Glycols