Mouse models of mitochondrial complex I dysfunction

Int J Biochem Cell Biol. 2013 Jan;45(1):34-40. doi: 10.1016/j.biocel.2012.08.009. Epub 2012 Aug 10.

Abstract

Diseases of the mitochondria generally affect cells with high-energy demand, and appear to most profoundly affect excitatory cells that have localized high energy requirements, such as neurons and cardiac and skeletal muscle cells. Complex I of the mammalian mitochondrial respiratory chain is a very large, 45 subunit enzyme, and functional deficiency of complex I is the most frequently observed cause of oxidative phosphorylation (OXPHOS) disorders. Impairment of complex I results in decreased cellular energy production and is responsible for a variety of human encephalopathies, myopathies and cardiomyopathies. Complex I deficiency may be caused by mutations in any of the seven mitochondrial or 38 nuclear genes that encode complex I subunits or by mutations in various other nuclear genes that affect complex I assembly or function. Mouse models that faithfully mimic human complex I disorders are needed to better understand the role of complex I in health and disease and for evaluation of potential therapies for mitochondrial diseases. In this review we discuss existing mouse models of mitochondrial complex I dysfunction, focusing on those with similarities to human mitochondrial disorders. We also discuss some of the noteworthy murine genetic models in which complex I genes are not disrupted, but complex I dysfunction is observed, along with some of the more popular chemical compounds that inhibit complex I function and are useful for modeling complex I deficiency in mice. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • DNA, Mitochondrial / metabolism
  • Disease Models, Animal*
  • Electron Transport Complex I / metabolism*
  • Gene Targeting
  • Humans
  • Mice
  • Mitochondria / metabolism*
  • Mitochondrial Diseases / metabolism*
  • Oxidative Phosphorylation

Substances

  • DNA, Mitochondrial
  • Electron Transport Complex I