Scale-up of nanoemulsion produced by emulsification and solvent diffusion

J Pharm Sci. 2012 Nov;101(11):4240-7. doi: 10.1002/jps.23291. Epub 2012 Aug 8.

Abstract

The scale-up of nanoemulsions (NEs) produced by emulsification and solvent diffusion process was successfully achieved in the present work. Up to 1500 mL of NEs were produced with olive oil, castor oil, almond oil, or Arlamol™ E by using a Y-shaped mixer device. NE droplet sizes were significantly modulated from 290 to 185 nm by changing the process parameters without modification of the formulation composition. Smaller NE droplet sizes were obtained by (1) decreasing the internal diameter of the Y-mixer from 5 to 0.8 mm, (2) increasing the flow rates of the organic and the aqueous phases upon mixing, and (3) increasing the temperature of the experiment from 5°C to 40°C. All the results of NE diameters (d(sc) ) expressed as a function of the Reynolds number (Re) and the shear rate inside the Y-mixer (\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\dot \gamma$\end{document}) showed the existence of typical power-law relationships: d(sc) = 10(2.82) Re(- 0.14) and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$d_{{\rm sc}} = 10^{2.60} \dot \gamma ^{- 0.06}$\end{document}, respectively. The existence of these power-laws for NE formation by emulsification and solvent diffusion process has never been reported in the literature yet and constitutes a new finding in this work. We definitely proved that the high turbulences created upon NE formation are the most important parameter allowing to decrease droplet size.

MeSH terms

  • Diffusion
  • Emulsions*
  • Nanotechnology*
  • Solvents*
  • Viscosity

Substances

  • Emulsions
  • Solvents