Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells

Mol Vis. 2012:18:2033-42. Epub 2012 Jul 20.

Abstract

Purpose: Retinoblastoma is a malignant tumor of the retina usually occurring in young children. To date, the conventional treatments for retinoblastoma have been enucleation, cryotherapy, external beam radiotherapy, or chemotherapy. Most of these treatments, however, have possible side effects, including blindness, infections, fever, gastrointestinal toxicity, and neurotoxicity. More effective treatments are therefore imperative. Gossypol has been reported as a potential inhibitor of cell proliferation in various types of cancers, such as prostate cancer, breast cancer, leukemia, and lung cancer. This study investigates the possible antiproliferative effect of gossypol on retinoblastoma.

Methods: Human retinoblastoma cells were cultured with various concentrations of gossypol and checked for cell viability with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nuclear condensation caused by cell apoptosis was detected by staining retinoblastoma cells with 4',6-diamidino-2-phenylindole (DAPI), counting those with condensed nuclei, and determining the percentage of apoptotic cells. In addition, the stages of apoptosis and phases in cell cycles were examined with flow cytometry. The possible signal transduction pathways involved were examined with a protein array assay and western blot analysis.

Results: After incubation, the cell survival rate was significantly lower after treatment with 5, 10, and 20 µM of gossypol. The maximum antisurvival effect of gossypol was observed at 20 µM, and the number of apoptotic cells was higher in the preparations cultured with 10 and 20 µM of gossypol. The results in flow cytometry indicated that at concentrations of 10 and 20 µM, gossypol increased the proportion of early- and late-apoptotic retinoblastoma cells and induced cell arrest of retinoblastoma cells at the same concentrations. This antiproliferative effect was later confirmed by upregulating the expression of death receptor 5 (DR5), caspase 8, caspase 9, caspase 3, cytochrome C, tumor protein 53 (p53), and second mitochondria-derived activator of caspases (Smac) in the signal transduction pathways.

Conclusions: We concluded that gossypol has an antiproliferative effect on retinoblastoma cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects
  • Apoptosis Regulatory Proteins
  • Blotting, Western
  • Caspases / genetics
  • Caspases / metabolism*
  • Cell Line, Tumor
  • Cell Nucleus / drug effects
  • Cell Survival / drug effects
  • Cytochromes c / genetics
  • Cytochromes c / metabolism
  • Dose-Response Relationship, Drug
  • Flow Cytometry
  • Gene Expression Regulation, Neoplastic / drug effects
  • Gossypol / pharmacology*
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / genetics
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / metabolism
  • Retinal Neoplasms / drug therapy
  • Retinal Neoplasms / metabolism
  • Retinal Neoplasms / pathology
  • Retinoblastoma / drug therapy
  • Retinoblastoma / metabolism
  • Retinoblastoma / pathology
  • Signal Transduction / drug effects*
  • Signal Transduction / genetics
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Antineoplastic Agents, Phytogenic
  • Apoptosis Regulatory Proteins
  • DIABLO protein, human
  • Intracellular Signaling Peptides and Proteins
  • Mitochondrial Proteins
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Tumor Suppressor Protein p53
  • Cytochromes c
  • Caspases
  • Gossypol