Designing multitarget anti-inflammatory agents: chemical modulation of the lumiracoxib structure toward dual thromboxane antagonists-COX-2 inhibitors

ChemMedChem. 2012 Sep;7(9):1647-60. doi: 10.1002/cmdc.201200272. Epub 2012 Aug 2.

Abstract

A series of lumiracoxib derivatives were designed to explore the influence of isosteric substitution on balancing COX-2 inhibition and thromboxane A(2) prostanoid (TP) receptor antagonism. The compounds were synthesized through a copper-catalyzed coupling procedure and characterized for their pK(a) values. TP receptor antagonism was assessed on human platelets; COX-2 inhibition was determined on human isolated monocytes and human whole blood. TPα receptor binding of the most promising compounds was evaluated through radioligand binding assays. Some of the isosteric substitutions at the carboxylic acid group afforded compounds with improved TP receptor antagonism; of these, a tetrazole derivative retained good COX-2 inhibitory activity and selectivity. The identification of this tetrazole acting as a balanced dual-acting compound in human whole blood, along with SAR analysis of the synthesized lumiracoxib derivatives, might contribute to the rational design of a new class of cardioprotective anti-inflammatory agents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Animals
  • Anti-Inflammatory Agents / chemistry*
  • Anti-Inflammatory Agents / pharmacology*
  • Aorta / drug effects
  • Blood Platelets / drug effects
  • Cell Line
  • Cyclooxygenase 2 / metabolism
  • Cyclooxygenase 2 Inhibitors / chemistry*
  • Cyclooxygenase 2 Inhibitors / pharmacology*
  • Diclofenac / analogs & derivatives*
  • Diclofenac / chemistry
  • Diclofenac / pharmacology
  • Drug Design
  • Humans
  • Male
  • Middle Aged
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Thromboxane A2, Prostaglandin H2 / antagonists & inhibitors*
  • Structure-Activity Relationship
  • Tetrazoles / pharmacology
  • Thromboxanes / antagonists & inhibitors
  • Young Adult

Substances

  • Anti-Inflammatory Agents
  • Cyclooxygenase 2 Inhibitors
  • Receptors, Thromboxane A2, Prostaglandin H2
  • Tetrazoles
  • Thromboxanes
  • Diclofenac
  • Cyclooxygenase 2
  • lumiracoxib