Preparation and characterization of Mg-Zr mixed oxide aerogels and their application as aldol condensation catalysts

Chemphyschem. 2012 Oct 8;13(14):3282-92. doi: 10.1002/cphc.201200440. Epub 2012 Jul 31.

Abstract

A series of Mg-Zr mixed oxides with different nominal Mg/(Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N(2) adsorption-desorption isotherms, and thermal and chemical analysis. Cubic Mg(x)Zr(1-x)O(2-x) solid solution, which results from the dissolution of Mg(2+) cations within the cubic ZrO(2) structure, is the main phase detected for the solids with theoretical Mg/(Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c-MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c-MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c-MgO phase mostly arises from the segregation of Mg atoms out of the alcogel-derived c-Mg(x)Zr(1-x)O(2-x) phase during the calcination process, and therefore the species c-MgO and c-Mg(x)Zr(1-x)O(2-x) are in close contact. Regarding the intrinsic activity in furfural-acetone aldol condensation in the aqueous phase, these Mg-O-Zr sites located at the interface between c-Mg(x)Zr(1-x)O(2-x) and segregated c-MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg-O-Mg sites on c-MgO and Mg-O-Zr sites on c-Mg(x)Zr(1-x)O(2-x). The very active Mg-O-Zr sites rapidly deactivate in the furfural-acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c-MgO phase. Nonetheless, these Mg-Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Ketones / chemical synthesis*
  • Ketones / chemistry
  • Magnesium / chemistry*
  • Oxides / chemistry*
  • Zirconium / chemistry*

Substances

  • Ketones
  • Oxides
  • Zirconium
  • Magnesium