Luminescence properties of silicon-cellulose nanocomposite

Nanoscale Res Lett. 2012 Jul 31;7(1):426. doi: 10.1186/1556-276X-7-426.

Abstract

We have characterized the structure and luminescence properties for two-component material composed of nanocrystalline cellulose and nanocrystalline (less to 100 nm) silicon powder. An efficient and stable photoluminescence of nanocomposite, resistant to the influence of gas-phase oxidants, has been found. The obtained material has electret-like properties and demonstrates the possibility of multiple-recharging in an electric field near 5·103 V/cm at temperatures ranging from -70°C to 100°C. The presence of the electric field, as well as ozone or low-temperature plasma treatment, does not change the luminescence spectrum due to quantum size properties of silicon nanoparticles. We believe that these particles may appear in two states: both embedded in a cellulose matrix and in the form of mechanical mixture.