Genomic analysis of a hybridoma batch cell culture metabolic status in a standard laboratory 5 L bioreactor

Biotechnol Prog. 2012 Sep-Oct;28(5):1126-37. doi: 10.1002/btpr.1605. Epub 2012 Sep 18.

Abstract

Currently, there is a gap in the knowledge of the culture responses to controlled bioreactor environment during the course of batch cell culture from early exponential phase to stationary-phase. If available, such information could be used to designate gene transcripts for predicting cell status and as a quality predictor for a controlled bioreactor. In this study, we used oligonucleotide microarrays to obtain baseline gene expression profiles during the time-course of a hybridoma batch cell culture in a 5 L bench-scale bioreactor. Gene expression changes that were up or down modulated from early-to-late in batch culture, as well as invariant gene profiles with significant expression were identified using microarray. Typical cellular functions that seemed to be correlated with transcriptomics were oxidative stress response, DNA damage response, apoptosis, and cellular metabolism. As confirmatory evidence, microarray findings were verified with a more rigorous semiquantitative gene-specific Reverse transcriptase-polymerase chain reaction (RT-PCR). The results of this study suggest that under predefined bioreactor culture conditions, significant gene changes from lag to log to stationary phase could be identified, which could then be used to track the culture state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Batch Cell Culture Techniques / instrumentation
  • Bioreactors
  • Gene Expression Profiling*
  • Genomics*
  • Hybridomas / metabolism*
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • Proteins / genetics*
  • Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Proteins