[Comparative study of biological characteristics of human umbilical cord and placental chorionic villous mesenchymal stem cells]

Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2012 Jun;20(3):692-6.
[Article in Chinese]

Abstract

Because advantage of tissue origin and proliferation potential, the umbilical cord-derived mesenchymal stem cells (UC-MSC) and placental chorionic villous-derived mesenchymal stem cells (CV-MSC) have clinical application potential, as compared with bone marrow MSC. But whether the differences of biological characteristics exist between UC-MSC and CV-MSC, which deserve to be further explored. This study was purposed to compare the biological characteristics of UC-MSC and CV-MSC. The placental and umbilical cord were cleaned by using the sterile physiological salt, the UC-MSC and CV-MSC were separated by enzyme digestion. Short tandem repeat (STR) analysis was used to detect whether the MSC obtained from fetal tissue. MTT method was used to detect proliferation of MSC. Flow cytometry was applied to analyze cell phenotype. The different differential medium was used to detect their multi-directional differentiation capacity. After the MSC and PHA-stimulated peripheral blood mononuclear cells were co-cultured, the γ-interferon (IFN-γ) levels of the co-culture supernatant were detected using the ELISA. The results showed that these MSC were derived from fetal tissue by STR analysis. They were adherent cells with typical fibroblast morphology. Cells expressed the MSC surface markers CD90, CD73 and CD105 and CD44, not expressed CD45 and of CD11b and CD34.These cells could differentiate into osteoblasts and adipoblasts under culture with different conditioned medium, but in the adipogenic differentiation of CV-MSC, the larger lipid droplets appeared. It is concluded that these cells are obtained MSC. These MSC can inhibit peripheral blood mononuclear cells stimulated by PHA to secrete IFN-γ, and the the CV-MSC have a stronger suppression capacity, which makes the CV-MSC to have a greater advantage in the treatment of autoimmune diseases.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Female
  • Flow Cytometry
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Placenta / cytology*
  • Pregnancy
  • Umbilical Cord / cytology*