Effective and efficient surfactant for CO2 having only short fluorocarbon chains

Langmuir. 2012 Jul 31;28(30):10988-96. doi: 10.1021/la301305q. Epub 2012 Jul 17.

Abstract

A previous study (Langmuir2011, 27, 5772) found the fluorinated double-tail sulfogulutarate 8FG(EO)(2) to act as a superefficient solubilizer for water in supercritical CO(2) (W/CO(2)) microemulsions. To explore more economic CO(2)-philic surfactants with high solubilizing power as well as rapid solubilization rates, the effects of fluorocarbon chain length and linking group were examined with sodium 1,5-bis(1H,1H,2H,2H-perfluoroalkyloxy)-1,5-dioxopentane-2-sulfonates (nFG(EO)(2), fluorocarbon chain length n = 4, 6, 8) and sodium 1,4-bis(1H,1H,2H,2H-perfluoroalkyloxy)-1,4-dioxobutane-2-sulfonate (nFS(EO)(2), n = 4, 8). Visual observation and UV-vis spectral measurements with methyl orange as a reporter dye indicated a maximum water-to-surfactant molar ratio (W(0)) in the microemulsions, which was 60-80 for nFG(EO)(2) and 40-50 for nFG(EO)(2). Although it is normally expected that high solubilizing power requires long fluorocarbon surfactant chains, the shortest fluorocarbon 4FG(EO)(2) interestingly achieved the highest W(0) (80) transparent single-phase W/CO(2) microemulsion. In addition, a very rapid solubilization of loaded water into CO(2) was observed for 4FG(EO)(2) even at a high W(0) of ~80.