Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors

Nanotechnology. 2012 Jul 11;23(27):275201. doi: 10.1088/0957-4484/23/27/275201. Epub 2012 Jun 18.

Abstract

A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Computer-Aided Design*
  • Equipment Design
  • Equipment Failure Analysis
  • Interferometry / instrumentation*
  • Models, Theoretical*
  • Photometry / instrumentation*
  • Surface Plasmon Resonance / instrumentation*