Large scale study on measurement of respiration activity (AT(4)) by Sapromat and OxiTop

Waste Manag. 2012 Oct;32(10):1752-9. doi: 10.1016/j.wasman.2012.05.024. Epub 2012 Jun 14.

Abstract

In the run-up for amending the Austrian landfill ordinance, parameters were developed to assess the stability/reactivity of mechanically-biologically pretreated residual wastes. The Landfill Ordinance 2008 regulates limit values for Respiration Activity (="Atmungsaktivität") RA(4) (AT(4))<7mgO(2)*(g dry matter (DM))(-1), Gas Generation Sum GS(21)<20Nl*kgDM(-1) and alternatively Gas Evolution (="Gasbildung") GB(21)<20Nl*kgDM(-1). Methods for analysing these parameters were established by the Austrian Standards Institute (2004). As laboratory practice shows, these methods also are used for the assessment of other wastes (sewage sludge, commercial waste, material from abandoned sites, biowaste compost). For measurement of respiration activity in Austria mainly two methods are used: the Sapromat®-method and the OxiTop®-method. Whether respectively to what extent these two methods give same results, is discussed in this paper. Since 2009 at ABF-BOKU 169 respiration activity tests of samples taken from different stages of MBT - as well as biowaste composting processes, materials from landfills as well as abandoned sites and residues from anaerobic treatment plants were analysed parallel by Sapromat® and OxiTop®. The results manifest very strong correlation between the Sapromat® and OxiTop® method. The correlation coefficient is 0.993. As a very clear tendency OxiTop® gives lower amounts than Sapromat®. In average the lower values of OxiTop® are around 88%.

Publication types

  • Comparative Study
  • Validation Study

MeSH terms

  • Cell Respiration
  • Linear Models
  • Waste Management*