The effect of different gloss levels on in-line monitoring of the thickness of printed layers by NIR spectroscopy

Anal Bioanal Chem. 2012 Aug;404(2):573-83. doi: 10.1007/s00216-012-6151-z. Epub 2012 Jun 7.

Abstract

Near-infrared (NIR) reflection spectroscopy was used for monitoring the thickness or rather the coating weight of thin printed layers of transparent oil-based offset printing varnishes in a range from 0.5 to 5 g m(-2). Quantitative analysis of the spectral data was carried out with partial least squares regression. Surface properties such as the gloss were found to strongly affect the prediction of the coating weight. This influence was minimized by the development of calibration models, which contained spectra of layers with a broad range of gloss levels. The prediction error of these models was in the order of 0.12 to 0.16 g m(-2). In-line measurements were carried out at a sheet-fed offset printing press in order to test the performance of the models under real process control conditions. Varnishes were applied to paper at printing speeds of 90 or 180 m min(-1). A close correlation between the predictions from in-line NIR spectra and the reference data from gravimetry was observed regardless of the specific degree of gloss of the layers (errors between 0.15 and 0.17 g m(-2)). The results clearly prove the efficiency of NIR reflection spectroscopy for quantitative investigations on thin layers in fast processes such as printing and demonstrate its analytical potential for quality and process control.