Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Sep;198(9):639-53. doi: 10.1007/s00359-012-0736-z. Epub 2012 Jun 6.

Abstract

We recorded the responses of lateral line units in the midbrain torus semicircularis of goldfish, Carassius auratus, to a 50-Hz vibrating sphere and determined the unit's spatial receptive fields for various distances between fish and sphere and for different directions of sphere vibration. All but one unit responded to the vibrating sphere with an increase in discharge rate. Only a proportion (25%) of the units exhibited phase-locked responses. Receptive fields were narrow or broad and contained one, two or more areas of increased discharge rate. The data show that the receptive fields of toral lateral line units are in many respects similar to those of brainstem units but differ from those of afferent nerve fibres. The responses of primary afferents represent the pressure gradient pattern generated by a vibrating sphere and provide information about sphere location and vibration direction. Across the array of lateral line neuromasts, the fish brain in principle can derive this information. Nevertheless, toral units tuned to a distinct sphere location or sensitive to a distinct sphere vibration direction were not found. Therefore, it is conceivable that the torus semicircularis uses a population code to determine spatial location and vibration direction of a vibrating sphere.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Goldfish / physiology*
  • Lateral Line System / physiology*
  • Mechanoreceptors / physiology*
  • Mesencephalon / physiology*
  • Vibration*