Mechanism for translocation of fluoroquinolones across lipid membranes

Biochim Biophys Acta. 2012 Nov;1818(11):2563-71. doi: 10.1016/j.bbamem.2012.05.027. Epub 2012 Jun 1.

Abstract

Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins. Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach the membrane in stacks, but they diffuse through the membrane as neutral CPFX monomers due to intermolecular transfer of protons favored by partial solvation loss. The mechanism is expected to be of importance in the permeation and translocation of a variety of ampholitic drugs with stacking tendencies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism*
  • Biological Transport
  • Ciprofloxacin / metabolism*
  • Lipid Bilayers*
  • Models, Molecular
  • Quantum Theory

Substances

  • Anti-Bacterial Agents
  • Lipid Bilayers
  • Ciprofloxacin