Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils

J Environ Manage. 2012 Oct 15:108:102-7. doi: 10.1016/j.jenvman.2012.04.044. Epub 2012 Jun 2.

Abstract

Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils.

MeSH terms

  • Animals
  • Biodegradation, Environmental
  • Herbivory*
  • Magnoliopsida / metabolism*
  • Metals, Heavy / metabolism*
  • Military Facilities
  • Soil / analysis

Substances

  • Metals, Heavy
  • Soil