A magnetic and magneto-optical investigation of Co-Pt alloy nanowire arrays

J Nanosci Nanotechnol. 2012 Feb;12(2):1105-8. doi: 10.1166/jnn.2012.4268.

Abstract

We have investigated the magneto-optical properties of highly ordered Co-Pt alloy nanowire arrays embedded in anodic aluminum oxide templates. The magnetic field-dependent Stokes parameters, Faraday rotation angle and ellipticity were investigated by an in-house magneto-optical measurement system. The extracted hysteresis loops are broadly consistent with magnetic hysteresis loops obtained from the vibrating sample magnetometer. The maximum Faraday rotation angle and ellipticity of these samples were examined as a function of nanowire composition. With an increase of platinum content from 9 at.% to 86 at.% in the as-deposited nanowire arrays, the maximum Faraday rotation angle per length decreases linearly from 1.39 x 10(3) degrees/cm to 1.58 x 10(2) degrees/cm. The maximum ellipticity shows a similar behavior with the composition. These linear relationships suggest a dilution model for the magnetic moment in the alloy nanowires. Our results indicate that magneto-optical measurements comprise an effective and sensitive method for monitoring the behavior of AAO-based magnetic nanowire arrays.