3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction

J Am Chem Soc. 2012 Jun 6;134(22):9082-5. doi: 10.1021/ja3030565. Epub 2012 May 29.

Abstract

Three-dimensional (3D) N-doped graphene aerogel (N-GA)-supported Fe(3)O(4) nanoparticles (Fe(3)O(4)/N-GAs) as efficient cathode catalysts for the oxygen reduction reaction (ORR) are reported. The graphene hybrids exhibit an interconnected macroporous framework of graphene sheets with uniform dispersion of Fe(3)O(4) nanoparticles (NPs). In studying the effects of the carbon support on the Fe(3)O(4) NPs for the ORR, we found that Fe(3)O(4)/N-GAs show a more positive onset potential, higher cathodic density, lower H(2)O(2) yield, and higher electron transfer number for the ORR in alkaline media than Fe(3)O(4) NPs supported on N-doped carbon black or N-doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for improving the ORR performance. Furthermore, Fe(3)O(4)/N-GAs show better durability than the commercial Pt/C catalyst.