Resonator fiber optic gyro employing a semiconductor laser

Appl Opt. 2012 May 20;51(15):2856-64. doi: 10.1364/AO.51.002856.

Abstract

Resonator fiber optic gyro (RFOG) based on the Sagnac effect has the potential to achieve the inertial navigation system requirement with a short sensing coil. Semiconductor laser is one of the key elements for integration and miniaturization of the RFOG. In this paper, an RFOG employing a semiconductor laser is demonstrated. The model of the laser frequency noise induced error in the RFOG is described. To attenuate the laser frequency noise induced error, active frequency stabilization is applied. An online laser frequency noise observation is built, as a powerful optimum criterion for the loop parameters. Moreover, the laser frequency noise observation method is developed as a new measurement tool. With a fast digital proportional integrator based on a single field programmable gate array applied in the active stabilization loop, the laser frequency noise is reduced to 0.021 Hz (1σ). It is equivalent to a rotation rate of 0.07°/h, and close to the shot noise limit for the RFOG. As a result, a bias stability of open-loop gyro output is 9.5°/h (1σ) for the integration time 10 s in an hour observed in the RFOG. To the best of our knowledge, this result is the best long-term stability using the miniature semiconductor laser.