The path from skin to brain: generation of functional neurons from fibroblasts

Mol Neurobiol. 2012 Jun;45(3):586-95. doi: 10.1007/s12035-012-8277-6. Epub 2012 May 22.

Abstract

Cell fate reprogramming makes possible the generation of new cell types from healthy adult cells to replace those lost or damaged in disease. Additionally, reprogramming patient cells into specific cell types allows for drug screening and the development of new therapeutic tools. Generation of new neurons is of particular interest because of the potential to treat diseases of the nervous system, such as neurodegenerative disorders and spinal cord injuries, with cell replacement therapy. Recent advances in cell fate reprogramming have led to the development of novel methods for the direct conversion of fibroblasts into neurons and neural stem cells. This review will highlight the advantages of these new methods over neuronal induction from embryonic stem cells and induced pluripotent stem cells, as well as outline the limitations and the potential for future applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain / cytology*
  • Fibroblasts / cytology*
  • Fibroblasts / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism
  • Neurogenesis
  • Neurons / cytology*
  • Neurons / metabolism
  • Skin / cytology*