Self-assembled peptides: characterisation and in vivo response

Biointerphases. 2012 Dec;7(1-4):2. doi: 10.1007/s13758-011-0002-x. Epub 2012 Feb 11.

Abstract

The fabrication of tissue engineering scaffolds is a well-established field that has gained recent prominence for the in vivo repair of a variety of tissue types. Recently, increasing levels of sophistication have been engineered into adjuvant scaffolds facilitating the concomitant presentation of a variety of stimuli (both physical and biochemical) to create a range of favourable cellular microenvironments. It is here that self-assembling peptide scaffolds have shown considerable promise as functional biomaterials, as they are not only formed from peptides that are physiologically relevant, but through molecular recognition can offer synergy between the presentation of biochemical and physio-chemical cues. This is achieved through the utilisation of a unique, highly ordered, nano- to microscale 3-D morphology to deliver mechanical and topographical properties to improve, augment or replace physiological function. Here, we will review the structures and forces underpinning the formation of self-assembling scaffolds, and their application in vivo for a variety of tissue types.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biocompatible Materials / metabolism*
  • Cellular Microenvironment
  • Humans
  • Nanostructures / chemistry
  • Peptides / metabolism*
  • Protein Multimerization*
  • Tissue Engineering / methods
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials
  • Peptides