Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene

Plant Cell. 2012 May;24(5):1848-59. doi: 10.1105/tpc.112.097105. Epub 2012 May 8.

Abstract

In plants, the transition to reproductive growth is of particular importance for successful seed production. Transformation of the shoot apical meristem (SAM) to the inflorescence meristem (IM) is the crucial first step in this transition. Using laser microdissection and microarrays, we found that expression of PANICLE PHYTOMER2 (PAP2) and three APETALA1 (AP1)/FRUITFULL (FUL)-like genes (MADS14, MADS15, and MADS18) is induced in the SAM during meristem phase transition in rice (Oryza sativa). PAP2 is a MADS box gene belonging to a grass-specific subclade of the SEPALLATA subfamily. Suppression of these three AP1/FUL-like genes by RNA interference caused a slight delay in reproductive transition. Further depletion of PAP2 function from these triple knockdown plants inhibited the transition of the meristem to the IM. In the quadruple knockdown lines, the meristem continued to generate leaves, rather than becoming an IM. Consequently, multiple shoots were formed instead of an inflorescence. PAP2 physically interacts with MAD14 and MADS15 in vivo. Furthermore, the precocious flowering phenotype caused by the overexpression of Hd3a, a rice florigen gene, was weakened in pap2-1 mutants. Based on these results, we propose that PAP2 and the three AP1/FUL-like genes coordinately act in the meristem to specify the identity of the IM downstream of the florigen signal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Flowers / genetics
  • Flowers / growth & development
  • Flowers / metabolism*
  • Meristem / metabolism*
  • Oryza / genetics
  • Oryza / growth & development
  • Oryza / metabolism*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Plants, Genetically Modified / genetics

Substances

  • Plant Proteins