Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage

Rev Sci Instrum. 2012 Apr;83(4):045105. doi: 10.1063/1.3700182.

Abstract

This paper presents a novel decoupled two degrees of freedom (2-DOF) translational parallel micro-positioning stage. The stage consists of a monolithic compliant mechanism driven by two piezoelectric actuators. The end-effector of the stage is connected to the base by four independent kinematic limbs. Two types of compound flexure module are serially connected to provide 2-DOF for each limb. The compound flexure modules and mirror symmetric distribution of the four limbs significantly reduce the input and output cross couplings and the parasitic motions. Based on the stiffness matrix method, static and dynamic models are constructed and optimal design is performed under certain constraints. The finite element analysis results are then given to validate the design model and a prototype of the XY stage is fabricated for performance tests. Open-loop tests show that maximum static and dynamic cross couplings between the two linear motions are below 0.5% and -45 dB, which are low enough to utilize the single-input-single-out control strategies. Finally, according to the identified dynamic model, an inversion-based feedforward controller in conjunction with a proportional-integral-derivative controller is applied to compensate for the nonlinearities and uncertainties. The experimental results show that good positioning and tracking performances are achieved, which verifies the effectiveness of the proposed mechanism and controller design. The resonant frequencies of the loaded stage at 2 kg and 5 kg are 105 Hz and 68 Hz, respectively. Therefore, the performance of the stage is reasonably good in term of a 200 N load capacity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Equipment Design
  • Finite Element Analysis
  • Interferometry
  • Lasers
  • Mechanical Phenomena
  • Microtechnology / instrumentation*
  • Models, Theoretical
  • Motion*