Paper-based ion-selective potentiometric sensors

Anal Chem. 2012 Jun 5;84(11):4695-702. doi: 10.1021/ac202979j. Epub 2012 May 8.

Abstract

A new approach to develop ultra low-cost, robust, rugged, and disposable potentiometric sensors is presented. A suspension of carbon nanotubes in a water-surfactant mixture (carbon nanotubes ink) is applied on conventional filter papers to turn them into conductive papers, which are then used as a substrate to build ion-selective electrodes. The electrodes are made by drop casting a membrane on a small circular area of the conductive paper. In this way, the carbon nanotubes act as both electric conductors and ion-to-electron transducers of the potentiometric signal. Electrodes for sensing K(+), NH(4)(+), and pH were built and tested using this approach, and the results were compared with classical solid-state ion selective electrodes using carbon nanotubes as transducers and glassy carbon as a substrate. In all cases, the analytical performance (sensitivity, linear ranges, limits of detection, selectivity, etc.) of these disposable paper electrodes was similar to that obtained for the more conventional type of ion-selective-electrodes. This opens new avenues for very low-cost platforms for generation of chemical information.