Mercury-induced biochemical and proteomic changes in rice roots

Plant Physiol Biochem. 2012 Jun:55:23-32. doi: 10.1016/j.plaphy.2012.03.008. Epub 2012 Mar 30.

Abstract

Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascorbate Peroxidases / genetics
  • Ascorbate Peroxidases / metabolism
  • Catalase / metabolism
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression Regulation, Plant / drug effects
  • Glutathione
  • Homeostasis / drug effects
  • Malondialdehyde
  • Mercury / toxicity*
  • Oryza / drug effects*
  • Oryza / genetics
  • Oryza / metabolism
  • Oxidation-Reduction / drug effects
  • Peroxidases / metabolism
  • Plant Growth Regulators / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Roots / drug effects*
  • Plant Roots / genetics
  • Plant Roots / metabolism
  • Proteome / genetics
  • Proteome / metabolism
  • Proteomics / methods*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Spectrometry, Mass, Electrospray Ionization
  • Superoxide Dismutase / metabolism

Substances

  • Plant Growth Regulators
  • Plant Proteins
  • Proteome
  • Malondialdehyde
  • Peroxidases
  • Ascorbate Peroxidases
  • Catalase
  • Superoxide Dismutase
  • Mercury
  • Glutathione