Photodissociation dynamics of tert-butylnitrite following excitation to the S1 and S2 states. A study by velocity-map ion-imaging and 3D-REMPI spectroscopy

Phys Chem Chem Phys. 2012 May 21;14(19):7076-89. doi: 10.1039/c2cp40349h. Epub 2012 Apr 10.

Abstract

Excitation of tert-butylnitrite into the first and second UV absorption bands leads to efficient dissociation into the fragment radicals NO and tert-butoxy in their electronic ground states (2)Π and (2)E, respectively. Velocity distributions and angular anisotropies for the NO fragment in several hundred rotational and vibrational quantum states were obtained by velocity-map imaging and the recently developed 3D-REMPI method. Excitation into the well resolved vibronic progression bands (k = 0, 1, 2) of the NO stretch mode in the S1← S0 transition produces NO fragments mostly in the vibrational state with v = k, with smaller fractions in v = k- 1 and v = k- 2. It is concluded that dissociation occurs on the purely repulsive PES of S1 without barrier. All velocity distributions from photolysis via the S1(nπ*) state are monomodal and show high negative anisotropy (β≈-1). The rotational distributions peak near j = 30.5 irrespective of the vibronic state S1(k) excited and the vibrational state v of the NO fragment. On average 46% of the excess energy is converted to kinetic energy, 23% and 31% remain as internal energy in the NO fragment and the t-BuO radical, respectively. Photolysis via excitation into the S2← S0 transition at 227 nm yields NO fragments with about equal populations in v = 0 and v = 1. The rotational distributions have a single maximum near j = 59.5. The velocity distributions are monomodal with positive anisotropy β≈ 0.8. The average fractions of the excess energy distributed into translation, internal energy of NO, and internal energy of t-BuO are 39%, 23%, and 38%, respectively. In all cases ∼8500 cm(-1) of energy remain in the internal degrees of freedom of the t-BuO fragment. This is mostly assigned to rotational energy. An ab initio calculation of the dynamic reaction path shows that not only the NO fragment but also the t-BuO fragment gain large angular momentum during dissociation on the purely repulsive potential energy surface of S2.

Publication types

  • Research Support, Non-U.S. Gov't