Low-temperature diffusion of oxygen through ordered carbon vacancies in Zr2C(x): the formation of ordered Zr2C(x)O(y)

Inorg Chem. 2012 May 7;51(9):5164-72. doi: 10.1021/ic300014a. Epub 2012 Apr 9.

Abstract

Investigations are performed on low-temperature oxygen diffusion in the carbon vacancy ordered ZrC(0.6)and thus induced formation of the oxygen atom ordered ZrC(0.6)O(0.4). Theoretically, a superstructure of Zr(2)CO can be constructed via the complete substitution of carbon vacancies with O atoms in the Zr(2)C model. In the ordered ZrC(0.6), the consecutive arrangement of vacancies forms the vacancy channels along some zone axes in the C sublattice. Through these vacancy channels, the thermally activated oxygen diffusion is significantly facilitated. The oxygen atoms diffuse directly into and occupy the vacancies, producing the ordered ZrC(0.6)O(0.4). Relative to the ordered ZrC(0.6), the Zr positions are finely tuned in the ordered ZrC(0.6)O(0.4) because of the ionic Zr-O bonds. Because of this fine adjustment of Zr positions and the presence of oxygen atoms, the superstructural reflections are always observable in a selected area electron diffraction (SAED) pattern, despite the invisibility of superstructural reflections in ZrC(0.6) along some special zone axes. Similar to the vacancies in ordered ZrC(0.6), the ordering arrangement of O atoms in the ordered ZrC(0.6)O(0.4) is in nanoscale length, thus forming the nano superstructural domains with irregular shapes.