Pulse energy as a reliable reference for twitch forces induced by transcutaneous neuromuscular electrical stimulation

IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):574-83. doi: 10.1109/TNSRE.2012.2188305. Epub 2012 Apr 3.

Abstract

Voltage-controlled neuromuscular electrical stimulation has been considered to be safer in noninvasive applications notwithstanding the fact that voltage-controlled devices purportedly generate forces less predictable than their current-controlled equivalents. This prompted us to evaluate relevant electrical parameters to determine whether forces induced by voltage-controlled stimuli were able to match to those induced by current-controlled ones, which tend to evoke forces that were more predictable. Force magnitudes corresponding to current- and voltage-controlled stimuli were aligned with respect to electric charge (equivalent to average current intensity) and electrical energy (equivalent to average power) of the same stimulation pulse to determine which provided a better coherence. Consistency of forces evaluated with energy was significantly (p < 0.001) better than that evaluated with electric charges, suggesting that electrically stimulated forces can be reliably predicted by monitoring the energy parameter of stimulation pulses. The above results appear to show that electrode-tissue impedance, a factor that makes charge and energy evaluations different, redefined the actual effects of current intensities in generating favorable results. Accordingly, novel schemes that track the energy (or average power) of a stimulation pulse may be used as a reliable benchmark to associate mechanical (force) and electrical (stimulation pulse) characteristics in transcutaneous applications of electrical stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biofeedback, Psychology / methods*
  • Biofeedback, Psychology / physiology*
  • Electric Stimulation / methods*
  • Energy Transfer
  • Isometric Contraction / physiology*
  • Male
  • Muscle, Skeletal / physiology*
  • Rabbits
  • Reproducibility of Results
  • Sensitivity and Specificity