The major facilitator superfamily (MFS) revisited

FEBS J. 2012 Jun;279(11):2022-35. doi: 10.1111/j.1742-4658.2012.08588.x. Epub 2012 May 8.

Abstract

The major facilitator superfamily (MFS) is the largest known superfamily of secondary carriers found in the biosphere. It is ubiquitously distributed throughout virtually all currently recognized organismal phyla. This superfamily currently (2012) consists of 74 families, each of which is usually concerned with the transport of a certain type of substrate. Many of these families, defined phylogenetically, do not include even a single member that is functionally characterized. In this article, we probe the evolutionary origins of these transporters, providing evidence that they arose from a single 2-transmembrane segment (TMS) hairpin structure that triplicated to give a 6-TMS unit that duplicated to a 12-TMS protein, the most frequent topological type of these permeases. We globally examine MFS protein topologies, focusing on exceptional proteins that deviate from the norm. Nine distantly related families appear to have members with 14 TMSs in which the extra two are usually centrally localized between the two 6-TMS repeat units. They probably have arisen by intragenic duplication of an adjacent hairpin. This alternative topology probably arose multiple times during MFS evolution. Convincing evidence for MFS permeases with fewer than 12 TMSs was not forthcoming, leading to the suggestion that all 12 TMSs are required for optimal function. Some homologs appear to have 13, 14, 15 or 16 TMSs, and the probable locations of the extra TMSs were identified. A few MFS permeases are fused to other functional domains or are fully duplicated to give 24-TMS proteins with dual functions. Finally, the MFS families with no known function were subjected to genomic context analyses leading to functional predictions.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Computational Biology*
  • Databases, Genetic
  • Evolution, Molecular
  • Inverted Repeat Sequences / genetics*
  • Membrane Transport Proteins / chemistry*
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism
  • Molecular Sequence Data
  • Phylogeny
  • Sequence Homology, Amino Acid
  • Structure-Activity Relationship

Substances

  • Bacterial Proteins
  • Membrane Transport Proteins