Oscillation control algorithms for resonant sensors with applications to vibratory gyroscopes

Sensors (Basel). 2009;9(8):5952-67. doi: 10.3390/s90805952. Epub 2009 Jul 27.

Abstract

We present two oscillation control algorithms for resonant sensors such as vibratory gyroscopes. One control algorithm tracks the resonant frequency of the resonator and the other algorithm tunes it to the specified resonant frequency by altering the resonator dynamics. Both algorithms maintain the specified amplitude of oscillations. The stability of each of the control systems is analyzed using the averaging method, and quantitative guidelines are given for selecting the control gains needed to achieve stability. The effects of displacement measurement noise on the accuracy of tracking and estimation of the resonant frequency are also analyzed. The proposed control algorithms are applied to two important problems in a vibratory gyroscope. The first is the leading-following resonator problem in the drive axis of MEMS dual-mass vibratory gyroscope where there is no mechanical linkage between the two proof-masses and the second is the on-line modal frequency matching problem in a general vibratory gyroscope. Simulation results demonstrate that the proposed control algorithms are effective. They ensure the proof-masses to oscillate in an anti-phase manner with the same resonant frequency and oscillation amplitude in a dual-mass gyroscope, and two modal frequencies to match in a general vibratory gyroscope.

Keywords: automatic gain control; averaging method; oscillation control; phase-locked loop; resonant sensor; vibratory gyroscope.