Edge-carboxylated graphene nanosheets via ball milling

Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5588-93. doi: 10.1073/pnas.1116897109. Epub 2012 Mar 27.

Abstract

Low-cost, high-yield production of graphene nanosheets (GNs) is essential for practical applications. We have achieved high yield of edge-selectively carboxylated graphite (ECG) by a simple ball milling of pristine graphite in the presence of dry ice. The resultant ECG is highly dispersable in various solvents to self-exfoliate into single- and few-layer (≤ 5 layers) GNs. These stable ECG (or GN) dispersions have been used for solution processing, coupled with thermal decarboxylation, to produce large-area GN films for many potential applications ranging from electronic materials to chemical catalysts. The electrical conductivity of a thermally decarboxylated ECG film was found to be as high as 1214 S/cm, which is superior to its GO counterparts. Ball milling can thus provide simple, but efficient and versatile, and eco-friendly (CO(2)-capturing) approaches to low-cost mass production of high-quality GNs for applications where GOs have been exploited and beyond.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.