The determinants of performance in master swimmers: a cross-sectional study on the age-related changes in propelling efficiency, hydrodynamic position and energy cost of front crawl

Eur J Appl Physiol. 2012 Dec;112(12):3949-57. doi: 10.1007/s00421-012-2376-y. Epub 2012 Mar 17.

Abstract

The decrease in swimming performance (v (max)) that occurs with age is a not only consequence of the physiological decrease in maximal metabolic power ([Formula: see text]) but can also be expected to depend on an increase in the energy cost of swimming (C) [Formula: see text] In turn, for a given speed and stroke C = W (d) / (η(P)η(o)) where W (d) is hydrodynamic resistance, η(P) is propelling efficiency and η(o) is overall efficiency. The aim of this study was to measure C in 47 male masters (31-85 years old) swimming the front crawl at sub-maximal, aerobic, speeds. During the experiments propelling efficiency and projected frontal area (A (eff), an index of W (d)) were also determined by kinematic analysis. "Elder" masters (60-80 years) swam at a significantly slower pace (0.65 vs. 0.91 m s(-1)), with a lower η(P) (0.23 vs. 0.31) and a larger A (eff) (0.39 vs. 0.23 m(2)) than "younger" masters (30-60 years). No significant differences in C (1.45 kJ m(-1), on the average) were observed as a function of age or speed, but C values were significantly higher than those assessed in young elite swimmers at the very same speeds; the difference increasing with age with a rate of 0.75 % per year. With the due considerations (in this study the observed changes in η(P), A (eff) and C can be either attributed to changes in speed or age) these data confirm the hypothesis that an increase in C contributes to the decrease in swimming performance that occurs with age.

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Athletic Performance / physiology*
  • Cross-Sectional Studies
  • Energy Metabolism
  • Humans
  • Hydrodynamics
  • Male
  • Middle Aged
  • Swimming*