Effect of Sutherlandia frutescens on the lipid metabolism in an insulin resistant rat model and 3T3-L1 adipocytes

Phytother Res. 2012 Dec;26(12):1830-7. doi: 10.1002/ptr.4653. Epub 2012 Mar 15.

Abstract

High fat diet induced insulin resistance correlates with dyslipidaemia and ectopic fat deposits in skeletal muscle and liver. The effects of Sutherlandia frutescens, an antidiabetic medicinal plant, on lipid metabolism were evaluated in an insulin resistant (IR) rat model and in 3 T3-preadipocytes. Wistar rats received normal diet (ND) or high fat diet (HFD). After the onset of IR in the HFD group, the rats were subdivided into two subgroups, which either continued with HFD or were treated with 50 mg S. frutescens/kg BW/day and HFD (HFD + SF). After 4 weeks, the HFD + SF rats had a significantly lower body weight than the HFD rats (p < 0.05). Blood plasma analysis showed a decrease in insulin, free fatty acids and triglycerides. Related changes in lipid parameters were observed in the liver, skeletal muscle and adipose tissue. To investigate the effects of S. frutescens on adipose tissue, 3 T3-L1 cells were used as a model. Treatment with S. frutescens led to a decrease in triglyceride accumulation, whilst glucose consumption and lactate production were increased (p < 0.05). These results indicate that S. frutescens directly affects mitochondrial activity and lipid biosynthesis in adipose tissue and provide a mechanism by which S. frutescens can restore insulin sensitivity by modulating fatty acid biosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / drug effects
  • Adipocytes / metabolism*
  • Adipose Tissue / drug effects
  • Adipose Tissue / metabolism
  • Animals
  • Blood Glucose / analysis
  • Body Weight / drug effects
  • Diet, High-Fat
  • Fabaceae / chemistry*
  • Insulin / blood
  • Insulin Resistance*
  • Lipid Metabolism / drug effects*
  • Liver / drug effects
  • Liver / metabolism
  • Male
  • Mice
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / metabolism
  • Plant Extracts / pharmacology*
  • Plants, Medicinal / chemistry*
  • Rats
  • Rats, Wistar

Substances

  • Blood Glucose
  • Insulin
  • Plant Extracts