Bacterial rheotaxis

Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4780-5. doi: 10.1073/pnas.1120955109. Epub 2012 Mar 12.

Abstract

The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid-solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus subtilis / cytology*
  • Chemotaxis*
  • Humans
  • Models, Biological
  • Movement
  • Rheology*
  • Stress, Mechanical