Practical high-resolution detection method for laser-induced breakdown spectroscopy

Appl Opt. 2012 Mar 1;51(7):B165-70. doi: 10.1364/AO.51.00B165.

Abstract

A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5 m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous-source Hg lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to the observed splitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying helium atmospheric pressures. The high performance, low cost, and compact footprint make this system highly competitive with 2 m double-pass Czerny-Turner spectrometers.