Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation

Adv Colloid Interface Sci. 2012 May 15:173:1-11. doi: 10.1016/j.cis.2012.02.001. Epub 2012 Feb 18.

Abstract

The structuring of water at soft solid surfaces remains an area of great interest to colloid science as a whole and has many applications in relation to colloid stability, foams, and wetting films as well as being central to membrane separations. Quantitatively calculating the structural components of thin layers of water and the interaction forces of hydrated molecules with the surface of pores through a layer of water having modified structure is one of the most important challenges in the physics of surface phenomenon. In this paper these effects are reviewed and discussed in relation to the confines of a capillary pore. Membrane nanofiltration is extremely complex and is dependent on the micro-hydrodynamics and interfacial events occurring at the membrane surface and within the membrane nanopores. There is significant debate as to the exact nature of these complex phenomena and rejection is typically attributed to a combination of steric and electrical effects. The electrical effects are less well understood and in particular the contribution of dielectric exclusion. A review of the two competing descriptions of dielectric exclusion is presented along with the theories currently used in modelling this phenomena. A series of rejection experiments of 0.01 M salt solutions at the membrane isoelectric point has been performed for the NF270 and NF99HF membranes. The dielectric constants inside the nanopore are calculated and these values were consistent for three of the salts studied, indicating that a simplistic model based on Born theory is accurate enough for engineering calculations and that ion solvation is most likely to be the more appropriate dielectric exclusion mechanism for true nanofiltration membranes.