The role of relativity and dispersion controlled inter-chain interaction on the band gap of thiophene, selenophene, and tellurophene oligomers

J Chem Phys. 2012 Mar 7;136(9):094904. doi: 10.1063/1.3689860.

Abstract

Ab initio relativistic density functional theoretical calculations have been carried out on π-conjugated oligomers of increasing length with S, Se, and Te as heteroatoms. The band gap of the corresponding polymers has been obtained by plotting lowest unoccupied molecular orbital (LUMO)-highest occupied molecular orbital (HOMO)gap against the reciprocal of the number of monomer units (1/N) and extrapolating the curve to 1/N = 0. With B3LYP functional, we predict that role of relativistic correction terms is not very significant in the determination of final band gap of thiophene, selenophene, and tellurophene polymer. The origin of this observation is provided through the density of states (DOS) analysis which manifests that DOS contribution across the Fermi level of these polymers is mostly governed by C atoms and as a consequence relativistic correction terms due to heavy heteroatom remain insignificant to the band gap modification. We also inspected the role of inter-chain interaction in determining the net LUMO-HOMO gap of π-stacked double chain oligomers of increasing length. We have found that due to the exciton splitting in the stacked configurations, the LUMO-HOMO gap decreases steadily. Furthermore, we have noticed that dispersion force has important role in the reduction of the LUMO-HOMO gap of the oligomers studied.