Avoidance of Majorana resonances in periodic topological superconductor-nanowire structures

Phys Rev Lett. 2012 Feb 10;108(6):067001. doi: 10.1103/PhysRevLett.108.067001. Epub 2012 Feb 8.

Abstract

Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermion in these semiconductor-superconductor-nanowire structures is tuning the semiconductor chemical potential in close proximity to the metallic superconductor. We show that presently realizable structures in experiments with tunable chemical potential lead to Majorana resonances, which are interesting in their own right, but do not manifest non-Abelian statistics. To resolve this crucial barrier to the solid state realization of Majorana fermions, we propose a new topological superconducting array structure where introducing the superconducting proximity effect from adjacent nanowires generates Majorana fermions with non-Abelian statistics.