Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells

PLoS One. 2012;7(2):e32170. doi: 10.1371/journal.pone.0032170. Epub 2012 Feb 23.

Abstract

Background: Achaete scute-like 2 (Ascl2), a basic helix-loop-helix (bHLH) transcription factor, controls the fate of intestinal stem cells. However, the role of Ascl2 in colon cancer progenitor cells remains unknown. The cell line HT-29 (47.5-95% of CD133(+) population) and LS174T (0.45% of CD133(+) population) were chosen for functional evaluation of Ascl2 in colon cancer progenitor cells after gene knockdown by RNA interference.

Methodology/principal findings: Immunohistochemistry demonstrated that Ascl2 was significantly increased in colorectal adenocarcinomas. Downregulation of Ascl2 using RNA interference in cultured colonic adenocarcinoma HT-29 and LS174T cells reduced cellular proliferation, colony-forming ability, invasion and migration in vitro, and resulted in the growth arrest of tumor xenografts in vivo. The Ascl2 protein level in CD133(+) HT-29 cells was significantly higher than in CD133(-) HT-29 cells. Ascl2 blockade via shRNA interference in HT-29 cells (shRNA-Ascl2/HT-29 cells) resulted in 26.2% of cells staining CD133(+) compared with 54.7% in control shRNA-Ctr/HT-29 cells. The levels of 'stemness' associated genes, such as CD133, Sox2, Oct4, Lgr5, Bmi1, and C-myc, were significantly decreased in shRNA-Ascl2/HT-29 and shRNA-Ascl2/LS174T cells in vitro as well as in the corresponding tumor xenograft (CD133 was not performed in shRNA-Ascl2/LS174T cells). The shRNA-Ascl2/HT-29 cells had inhibited abilities to form tumorspheres compared with control. The microRNA (miRNAs) microarrays, identified 26 up-regulated miRNAs and 58 down-regulated miRNAs in shRNA-Ascl2/HT-29 cells. Expression levels of let-7b, miRNA-124, miRNA-125b, miRNA-17, miRNA-20a and miRNA-302b, involved in the regulation of 'stemness', were quantified with qPCR, which confirmed their identities. Restoration of miRNA-302b, via its mimic, led to the restoration of shRNA-Ascl2/HT-29 'stemness' characteristics, including tumorsphere formation and 'stemness' associated genes levels, and the recovery of cellular behaviors, including colony-forming ability, invasion and migration in vitro.

Conclusions/significance: Ascl2 may be a potential target for the inhibition of colon cancer progenitor cells, and functions through a miR-302b-related mechanism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AC133 Antigen
  • Animals
  • Antigens, CD / biosynthesis
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Colonic Neoplasms / metabolism*
  • Glycoproteins / biosynthesis
  • Humans
  • Immunohistochemistry
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / metabolism*
  • Neoplasm Invasiveness
  • Neoplasm Transplantation
  • Peptides
  • RNA Interference
  • Stem Cells / cytology

Substances

  • AC133 Antigen
  • ASCL2 protein, human
  • Antigens, CD
  • Basic Helix-Loop-Helix Transcription Factors
  • Glycoproteins
  • MIRN302A microRNA, human
  • MicroRNAs
  • PROM1 protein, human
  • Peptides
  • Prom1 protein, mouse