Genetic variation and virulence of Autographa californica multiple nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus isolates

J Invertebr Pathol. 2012 May;110(1):33-47. doi: 10.1016/j.jip.2012.02.002. Epub 2012 Feb 14.

Abstract

To determine the genetic diversity within the baculovirus species Autographa calfornica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus), a PCR-based method was used to identify and classify baculoviruses found in virus samples from the lepidopteran host species A. californica, Autographa gamma, Trichoplusia ni, Rachiplusia ou, Anagrapha falcifera, Galleria mellonella, and Heliothis virescens. Alignment and phylogenetic inference from partial nucleotide sequences of three highly conserved genes (lef-8, lef-9, and polh) indicated that 45 of 74 samples contained isolates of AcMNPV, while six samples contained isolates of Rachiplusia ou multiple nucleopolyhedrovirus strain R1 (RoMNPV-R1) and 25 samples contained isolates of the species Trichoplusia ni single nucleopolyhedrovirus (TnSNPV; Alphabaculovirus). One sample from A. californica contained a previously undescribed NPV related to alphabaculoviruses of the armyworm genus Spodoptera. Data from PCR and sequence analysis of the ie-2 gene and a region containing ORF ac86 in samples from the AcMNPV and RoMNPV clades indicated a distinct group of viruses, mostly from G. mellonella, that are characterized by an unusual ie-2 gene previously found in the strain Plutella xylostella multiple nucleopolyhedrovirus CL3 (PlxyMNPV-CL3) and a large deletion within ac86 previously described in the AcMNPV isolate 1.2 and PlxyMNPV-CL3. PCR and sequence analysis of baculovirus repeated ORF (bro) genes revealed that the bro gene ac2 was split into two separate bro genes in some samples from the AcMNPV clade. Comparison of sequences in this region suggests that ac2 was formed by a deletion that fused the two novel bro genes together. In bioassays of a selection of isolates against T. ni, significant differences were observed in the insecticidal properties of individual isolates, but no trends were observed among the AcMNPV, TnSNPV, or RoMNPV groups of isolates. This study expands on what we know about the variation of AcMNPV, AcMNPV-like and TnSNPV viruses, provides novel information on the distinct groups in which AcMNPV isolates occur, and contributes to data useful for the registration, evaluation, and improvement of AcMNPV, AcMNPV-like, and TnSNPV isolates as biological control agents.

MeSH terms

  • Animals
  • Base Sequence
  • Genes, Viral
  • Genetic Variation*
  • Lepidoptera / virology*
  • Molecular Sequence Data
  • Nucleopolyhedroviruses / genetics*
  • Nucleopolyhedroviruses / isolation & purification
  • Nucleopolyhedroviruses / pathogenicity*
  • Phylogeny
  • Polymerase Chain Reaction
  • Virulence / genetics