Evanescent wave fiber optic biosensor for salmonella detection in food

Sensors (Basel). 2009;9(7):5810-24. doi: 10.3390/s90705810. Epub 2009 Jul 21.

Abstract

Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF) assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11) was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm) excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 10(3) cfu/mL in pure culture and 10(4) cfu/mL with egg and chicken breast samples when spiked with 10(2) cfu/mL after 2-6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

Keywords: Salmonella; chicken; egg; fiber optic sensor; time–resolved fluorescence assay.