The influence of core musculature engagement on hip and knee kinematics in women during a single leg squat

Int J Sports Phys Ther. 2012 Feb;7(1):1-12.

Abstract

Purpose/background: Excessive frontal plane motion and valgus torques have been linked to knee injuries, particularly in women. Studies have investigated the role of lower extremity musculature, yet few have studied the activation of trunk or "core" musculature on hip and knee kinematics. Therefore, this study evaluated the influence of intentional core engagement on hip and knee kinematics during a single leg squat.

Methods: Participants (n = 14) performed a single leg squat from a 6 inch step under 2 conditions: core intentionally engaged (CORE) and no intentional core engagement (NOCORE). Participants were also evaluated for core activation ability using Sahrmann's model, and the resulting scores were used to divide participants into low (LOWCORE) and high scoring (HIGHCORE) groups. All trials were captured using 3-D motion analysis, and data were normalized for height and time. Paired t-tests and repeated measures, mixed model MANOVAs were used to assess condition and group differences.

Results: The CORE condition, compared to NOCORE, was characterized by smaller right [t(13) = 3.03, p = .01] and left [t(13) = 3.04, p = .01] hip frontal plane displacement and larger knee flexion range of motion [t(13) = 3.08, p = .009]. Subsequent MANOVAs and follow-up analyses revealed that: (1) the CORE condition demonstrated smaller right and left hip medial-lateral displacement in the LOWCORE group (p = .001), but not in the HIGHCORE group; (2) the CORE condition showed larger overall knee flexion range of motion across LOWCORE and HIGHCORE groups (p = .021); and (3) the HIGHCORE group exhibited less knee varus range of motion across CORE and NOCORE conditions (p = .028).

Conclusions: Intentional core activation influenced hip and knee kinematics during single leg squats, with greater positive effect noted in the LOWCORE group. These findings may have implications for preventing and rehabilitating knee injuries among women.

Level of evidence: 2B, Cohort laboratory study, mixed model design.

Keywords: Biomechanics; Core Musculature; Kinematics; Knee.