DNA demethylation in normal colon tissue predicts predisposition to multiple cancers

Oncogene. 2012 Nov 29;31(48):5029-37. doi: 10.1038/onc.2011.652. Epub 2012 Feb 6.

Abstract

Some colon cancer (CC) patients present synchronous cancers at diagnosis and others develop metachronous neoplasms, but the risk factors are unclear for non-hereditary CC. We showed previously that global DNA demethylation increased with aging and correlated with genomic damage in CC, and we show now that preferentially associates to CCs with wild-type p53. This study aimed to elucidate the extent of DNA hypomethylation in patients with single and multiple CC, its relationship with aging, and its potential as predictive tool. We compared by real-time methylation-specific PCR the relative demethylation level (RDL) of long interspersed nucleotide element-1 (LINE-1) sequences in matched cancer tissues and non-cancerous colonic mucosa (NCM) from patients with single and multiple right-sided CCs. Although no RDL difference was found in NCM from single CC patients and healthy volunteers (P=0.5), there was more demethylation (higher RDL) in NCM from synchronous cancer patients (P=1.1 × 10(-5)) multiple CCs also were more demethylated than single CCs (P=0.0014). High NCM demethylation was predictive for metachronous neoplasms (P=0.003). In multivariate logistic regression analyses RDL was the only independent predictor for metachronous (P=0.02) and multiple (P=4.9 × 10(-5)) tumors. The higher LINE-1 demethylation in NCM from patients with multiple (synchronous and metachronous) tumors (P=9.6 × 10(-7)) was also very significant in patients with tumors without (P=3.8 × 10(-6)), but not with (P=0.16) microsatellite instability. NCM demethylation increased with aging in patients with single tumors, but decreased in those with multiple tumors. Moreover, the demethylation difference between patients with single vs multiple tumors appeared higher in younger (P=3.6 × 10(-4)) than in older (P=0.0016) patients. These results predict that LINE-1 hypomethylation in NCM can be used as an epigenetic predictive biomarker for multiple CC risk. The stronger association of demethylation in NCM with multiple CC risk from younger patients also suggests an inherited predisposition for the apparent field cancerization effect of somatic demethylation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Colon / metabolism*
  • DNA Methylation*
  • Female
  • Genetic Predisposition to Disease*
  • Humans
  • Long Interspersed Nucleotide Elements
  • Male
  • Middle Aged
  • Neoplasms / genetics*
  • Polymerase Chain Reaction