Flexible and dynamic thermal behavior of self-catenated [{Ni3(H2O)3(Bpa)4}(V6O18)]·8H2O constructed from 10-c heterometallic inorganic-organic clusters

Inorg Chem. 2012 Feb 20;51(4):2130-9. doi: 10.1021/ic201951e. Epub 2012 Feb 3.

Abstract

The hydrothermal treatment of Ni(NO(3))(2)·6H(2)O, NaVO(3), and Bpa (1,2-Di(pyridyl)ethane) (C(12)H(12)N(2)) at 120 °C during 3 days leads to green single crystals of the title compound. The single crystal X-ray diffraction reveals that [{Ni(3)(H(2)O)(3)(Bpa)(4)}(V(6)O(18))]·8H(2)O crystallizes in the monoclinic system, P2(1)/c space group, with a = 13.5536 (2), b = 19.0463 (2), c = 27.7435 (3) Å, β = 112.3880 (10)°, V = 6622(3) Å(3), with R1(obs) = 0.0558, wR2(obs) = 0.1359, for 10278 observed reflections. The complexity of the crystal structure is based on different points, as the existence of: both "gauche" and "trans" conformations of the organic ligand, the [V(12)O(36)](-12) cycles, formed by 12 corner-sharing VO(4) tetrahedra, and, finally, the combination of both three-dimensional metal-organic and inorganic substructures, giving rise to a self-catenated highly connected net. The crystallization water molecules are semi-encapsulated in the channels along the [100] direction, and their loss gives rise to a dynamical and reversible structural contraction. Moreover, after the removal of the crystallization water molecules, the compound exhibits a negative thermal behavior in the 85-155 °C temperature range, and irreversible structural transformation due to the loss of coordinated water molecules up to 200 °C. The IR and UV-vis spectra were determined for the as-synthesized sample, after the removal of crystallization water molecules and after the irreversible transformation due to the loss of coordinated water molecules. The thermal evolution of χ(m) was adjusted to a magnetic model considering an isotropic dimer plus two Ni(II) d(8) isolated octahedra.